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Abstract
Network pruning is widely applied to deep CNN
models due to their heavy computation costs and
achieves high performance by keeping important
weights while removing the redundancy. Pruning
redundant weights directly may hurt global infor-
mation flow, which suggests that an efficient sparse
network should take graph properties into account.
Thus, instead of paying more attention to preserv-
ing important weight, we focus on the pruned ar-
chitecture itself. We propose to use graph entropy
as the measurement, which shows useful properties
to craft high-quality neural graphs and enables us to
propose efficient algorithm to construct them as the
initial network architecture. Our algorithm can be
easily implemented and deployed to different pop-
ular CNN models and achieve better trade-offs.

1 Introduction
The success of Convolutional Neural Networks (CNNs)
comes with massive parameters computation and storage. A
wide variety of models with deeper architecture have been
exploited in recent years and have achieved state-of-the-art
performance in many computer vision applications, such as
image classification and object detection. [Krizhevsky et al.,
2012; Szegedy et al., 2014; Simonyan and Zisserman, 2014;
He et al., 2016; Huang et al., 2016] However, due to the
high computation costs and run-time memory, those deep
networks cannot be directly deployed to some resource con-
strained platforms, such as mobile devices and embedded
sensors, which has great application potential.

Thus, reducing the storage and computation usage of deep
CNN models has received increasing attention [LeCun et al.,
1990; Hassibi and Stork, 1993]. Recently, some compression
algorithms have been further explored to achieve satisfactory
performance in deeper and large-scale CNN model compres-
sion [Han et al., 2015; Li et al., 2016; Zhou et al., 2016;
Yang et al., 2016; Luo et al., 2017; Liu et al., 2017; You et
al., 2017; He et al., 2017; Yu et al., 2017; Zhang et al., 2018;
Wu et al., 2018; Bansal et al., 2018]. By pruning the neurons
or channels, the network can be more sparse and efficiency
of networks can be improved. [Han et al., 2015] proposes to
prune the neural connections with small weights. [Li et al.,

Figure 1: Example neural graphs construction using random algo-
rithm and regular algorithm. The left graph is constructed by choos-
ing the vertices on other side uniformly and independently at ran-
dom, while the right one controls the regularity instead of random
construction. It is obvious that random algorithm might block data
flow due to its uncertainty, which regular algorithm can avoid.

2016] proposes to prune the channels with small weights and
then fine-tune the network. [Yang et al., 2016] proposes a
layer-by-layer pruning algorithm by minimizing the error in
the output features. [Luo et al., 2017] prunes the channels
according to the next layer’s feature reconstruction error. [Yu
et al., 2017] propagates the feature ranking on the final re-
sponse layer to obtain neuron importance scores. [Liu et al.,
2017] proposed to make use of the scaling factors in Batch
normalization [Ioffe and Szegedy, 2015] for pruning chan-
nels. [Zhang et al., 2018] formulates pruning as a constrained
nonconvex optimization problem.

Typical network pruning techniques focus on keeping im-
portant weights and fine-tune pruned models. However, re-
cent works argue that the pruned architecture itself con-
tributes to the final efficiency [Zhu and Gupta, 2017; Liu et
al., 2018]. Getting lost in manipulating individual neurons or
channels, we could ignore the big picture of the neural net-
work. To illustrate, we constructed two toy networks of 2
layers with same number of connections under different al-
gorithms. The random algorithm is constructed by randomly
selecting the neural connections in the neural graph, whereas
the regular algorithm randomly selects the neural connections
under the constraint of regularity. For example, poor regu-
larity may block data flows and hinder neurons or channels
from getting involved in the network, as shown in Figure 1a,
which is generated by random algorithm. It is therefore nec-
essary to have a thorough investigation on the characteristics
displayed by the neural network as a whole (see Figure 1b),



which forces all the vertices on the same side have similar
degrees.

In this paper, we propose to craft efficient deep neural net-
work through a graph lens. Structural complexity reveals
the way in which vertices and edges are arranged in the
graph, providing a significant influence on the graph function
and performance. Graph entropy offers an attractive route
to such complexity measures. To increase the capacity of
the pruned network under a particular network sparsity, we
maximize graph entropy of the network by optimizing the
arrangements of neurons and connections. We identify im-
portant weights from the pre-trained over-parameterized net-
work, and use them in preference to others in crafting our ef-
ficient neural network. Based on the resulting sparse network
architecture, we train the network parameters from scratch
rather than adapting their original weights. The proposed al-
gorithm can be easily deployed to many popular network ar-
chitectures, such as ResNet [He et al., 2016], VGG networks
[Simonyan and Zisserman, 2014] and DenseNet [Huang et
al., 2016]. Experimental results on ImageNet and CIFAR
datasets [Krizhevsky, 2009; Deng et al., 2009] demonstrate
that deep neural networks can be well compressed by investi-
gating graph entropy while preserving the accuracy.

2 Methodology
Pruning neural networks is to compresses networks by delet-
ing neurons or neuron connections from a trained model,
which has been paid more attention to in recent years. How-
ever, most pruning techniques only involve local operations
and do not take whole network proprieties into consideration,
which may block information flows from layer to layer. In
contrast, we take neural network architecture as a graph, and
construct sparse graphs with a global viewpoint to initialize
the network architecture before the training phase. To en-
courage better information flow in the network, we employ
Von Neumann Entropy as a measurement to assess the qual-
ities of graphs, which leads to a favorable tradeoff between
accuracy and sparsity of the neural network.
2.1 Von Neumann Entropy
Von Neumann Entropy is an extension of the Gibbs entropy
to the quantum field, which can be treated as a quantita-
tive measure of mixedness of density matrices [Braunstein
et al., 2004]. Recently, considering its capability of describ-
ing spectral complexity, centrality, and entanglement of the
graph, Von Neumann Entropy has been further explored to
evaluate graph entropy in various graph pattern recognition
and analysis applications. The definition of Von Neumann
Entropy is given as

S(ρ) = −tr(ρ ln ρ), (1)
where tr denotes the trace of matrix and ρ is the density ma-
trix. ρ could be a Laplacian matrix LG scaled by degree sum
of graph G, i.e. ρ = 1

dG
LG. Given λi as the i-th eigenvalue

of density matrix ρ, Von Neumann Entropy can be re-written
in terms of spectrum of ρ as

S(ρ) = −
n∑

i=1

λi lnλi. (2)

The Shannon entropy computes the uncertainty of global
spectral parameters of graph, involving all the eigenvalues,

Figure 2: Example neural graphs construction using greedy algo-
rithm. Given the same number of edges, the left graph is the one
with minimum entropy and the right one with maximum entropy.
We can see that a graph with more fully-connected clusters tends
to have small entropy and a well-balanced one tends to have large
entropy.
which makes it a useful and general measurement. Here we
pay more attention to properties of Von Neumann Entropy.

To illustrate, we first constructed two toy graphs with the
minimum and maximum entropy using greedy algorithm to
explore its properties, as shown in Figure 2. We observed that
given a fixed number of edges, if there are more connected
clusters that are disjoint unions of highly fully-connected sub-
graph, the graph will have a smaller entropy. This is consis-
tent with the results in [Passerini and Severini, 2008]. The
entropy of the graph in Figure 2 (a) is 2.554. Almost half
of connections from the first layer to bottom layer have been
blocked and several vertices are deactivated due to the min-
imum entropy construction. On the contrary, a “balanced”
graph that has a higher regularity tends to have a larger en-
tropy. A more rigorous proof will be given later. For exam-
ple, we plot a graph that is constructed with the maximum en-
tropy given 50 edges in Figure 2 (b) whose entropy is 2.875.
All vertices on the same layer have similar degree, which pro-
duces a balanced graph and results in better connections and
data flows. If a graph is more balanced, every neuron would
be more active in contributing to the entire neural network,
which results in a better network performance.

An efficient deep neural network is expected to have a bet-
ter inner connection for data flows and high-sparsity for effi-
cient compression, a graph of large entropy exactly tickes all
the boxes. Consider the neural graph G = (V,E), where V
is the set of vertices with size n and E is the set of edges with
size m. We can use greedy algorithm to maximize the en-
tropy of graph. We simply compute graph entropy increment
by adding all the possible edges and select the one which con-
tributes the maximum increment. Algorithm 1 shows the de-
tails of it. After the neural graph construction, a network can
be easily crafted from the graph.

For a linear layer, it can easily built by treating vertices
as neurons and edges as neuron connections. For a convolu-
tional layer, it can be built by a similar way where we treat
vertices as channels and edges as filters. The number of con-
nections or size of filters depends on hyper parameter m′,
which is the number of selected edges in Algorithm 1.

However, greedy algorithm often takes lots of time to craft
graphs. To select an edge added to graph, we need to compute
the Entropy increment for all the possible edges with size m
and computation of Von Neumann Entropy takes O(n3), so



each step in greedy algorithm takes O(mn3) and the total
complexity becomes O(m2n3). Thus, we tried making use
of properties of graph entropy to reduce the complexity.

Algorithm 1 Neural graph generation with greedy algorithm

Input: number of total edges m, number of edges to select
m′

Output: graph G with size of m′

Initialize graph G = []
Initialize edges E with size m, which are edges of com-
plete neural graph (fully connected)
repeat
Entropymax = 0
for i = 0 To i = |E| − 1 do
Entropy(G ∪ Ei) = EntropyofG ∪ Ei

if Entropymax < Entropy(G ∪ Ei) then
Emax = Ei

Entropymax = Entropy(G ∪ Ei)
else

Continue
end if

end for
Add edge Emax to G

until |G| is m′

2.2 Regularity of the Graph

In graph theory, a graph is taken as regular, if its vertices have
the same degree or valency. “Regularity” thus describes the
extent of the graph to be regular, and can be computed as

R = −std(d), (3)

where std denotes the standard deviation and d denotes the
degrees of all vertices in the graph.

We found that regularity has a strong connection to Von
Neumann Entropy. By approximating Von Neumann Entropy
using quadratic entropy [Lin and Zhou, 2018], we have

S(ρ) ≈ tr(ρ(In − ρ)), (4)

where In is an identity matrix. Recall ρ = 1
dG
LG and the

degree sum of graph dG = 2m. Eq. 4 can be rewritten as

S(ρ) ≈ tr(LG

2m
(In −

LG

2m
))

=
1

2m
tr(LG)−

1

4m2
tr(L2

G).

(5)

Based on the properties of Laplacian matrix that LG is sym-
metric and the trace of it is equal to 2m, Von Neumann En-
tropy approximation can be rewritten in a form of degree,
computed as

S(ρ) ≈ 1− 1

2m
− 1

4m2

∑
v∈V

d2v, (6)

where dv denotes the degree of vertex v. Given an edge (a, b)
between vertices a and b, the increment in entropy of adding

Algorithm 2 Random regular neural graph generation

Input, output and Initialization are same with Algorithm 1
Initialize D with the size of n to record the degrees
repeat

For edge [a, b] in E, compute the squared sum of degree
dS = (da + 1)2 + (db + 1)2

Find the edges with minimum dSmin from E, marked
as E′

Randomly select one edge [u, v] from E′

Add edge [u, v] to G
Update Du and Dv in D

until |G| is m′

this edge to graph can be computed as

S(ρ(G ∪ (a, b)))− S(ρ(G)) ≈
1

2m
+

1

4m2

∑
v∈V

d2v −
1

2(m+ 1)

− 1

4(m+ 1)2
(
∑
v 6=a,b

d2v + (da + 1)2 + (db + 1)2).

(7)

From Eq. 7, it is obvious that the increment of entropy de-
pends on da and db. Graph G can obtain more increment in
entropy if vertices a and b have smaller degrees. We reduce
the cost of searching, by simply choosing the vertices pair
with smallest squared sum of degrees in each step, instead of
computing the entropy increment of adding all the possible
edges, which reduces computation complexity toO(m2). Al-
gorithm 2 shows the details of our regular construction. The
complexity can be further reduced by exploring the vertex
degree boundaries. The objective is to minimize the squared
sum of degrees and we can derive a lower bound by making
use of inequality as

(da + 1)2 + (db + 1)2 ≥ (da + db + 2)2

2
(8)

From Eq. 8, we obtain a sub-optimal solution by directly
minimizing the lower bound da + db, which can be used to
further decrease the complexity based on Proposition 1.
Proposition 1. The degrees of all vertices are in range
[b 2m|V |c, d

2m
|V |e].

Proof. To prove it by contradiction, we assume the opposite.
(a) If there exists a vertexX has degree of d 2mn e+1, all other
vertices have minimum degree of d 2mn e or X cannot be se-
lected. And the sum degree of graph will be 2m + 1, which
conflicts with the definition of graph. (b) If there exists a
vertex X has degree of b 2mn c − 1, X has not been assigned
to an edge added to the graph in the final step, which con-
flicts with the principle that we choose the vertices pair with
smallest degrees. Thus all the degrees of vertices are in range
[ 2mn − 1, 2mn ].

Based on proposition 1, high regularity is the property our
target graph must have and we simply adopt random algo-
rithm to generate a graph with high regularity by randomly
adding edges to graph while restricting degree upper bound-
ary of all the vertices, which reduces computation complexity



Figure 3: An illustration of our algorithm. Dotted lines denotes the complete neural graph and full ones denotes the edges added to the final
sparse graph. With importance weights, we add edges with maximum importance scores one by one to the graph. Meanwhile, we force the
regularity of graph. For example, the edges with red values are the ones with top importance scores in the layer, however, those added to
graph sometimes are not exactly these edges due to the regularity.
to O(m). In terms of models which contains massive lay-
ers and neural connections, we can simply divide the entire
network into several subnetworks, which further reduces the
complexity of construction.

2.3 Importance Weight
Although we reduce the construction complexity, the output
graph is not fixed due to the random algorithm which ran-
domly select the edge with minimum squared sum of degrees
because there is no criterion for selection when the graph ex-
ists multiple vertices pairs with minimum sum, which makes
the performance unstable, shown in Algorithm 2. Thus, we
introduce importance weights which can be easily obtained
to tackle this problem by giving the selection criterion.

Algorithm 3 Regular neural graph generation with impor-
tance weights

Input, output and Initialization are same with Algorithm 1
Additional Input: importance scores S
Sort S in descending order
Sort E according to S
repeat

Select edge [u, v] from E in order
if degree(u) < Umaxd

and degree(v) < Vmaxd
then

Add edge [u, v] to G
else

Continue
end if

until |G| is m′

Importance Estimation By Gradient: The role of impor-
tance estimation is illustrated in Figure 3. Given the network
N and input x, the output of network is N(x; θ), where θ de-
notes weight parameters of network. The neuron connections
(for FC layer) or filters (for CNN layer) may have different
levels of importance according to the sensitivities of output
to the infinitesimal changes on them. The output difference
under perturbation can be estimated by simply computing the
gradients of them as

N(x; θ + ε)−N(x; θ) ≈
k∑

i=1

∂(N(x; θ))

∂θi
εk, (9)

where ε is the perturbation on weight parameters and k is
the number of parameters in the network. From Eq. 9, the
sensitivity depends on the gradients of learned network with
respect to the weight parameters on input x. Thus, we can
obtain estimated importance weights by computing their gra-
dients as

S(k) =
1

M

M∑
i=1

∂(N(xi; θ))

∂θk
, (10)

where M is the number of examples from dataset. From Eq.
10, importance weights can be computed by M times back-
wards on a pre-trained model and selected dataset, which as-
sists our initial sparse network to pay more attention to these
connections with more important data flows.

With importance weights, we can construct the entire neu-
ral graph with high regularity by adding edges one by one ac-
cording to their importance levels instead of random selection
algorithm, shown in Figure 3. Algorithm 3 shows the details
of our sparse regular graph construction. Thus regular algo-
rithm with importance weights guarantees that edges which
tend to have important data flow will be added to the graph,
which makes the generated network adaptive to the specific
dataset so that our network has more stable performance and
gains better trade-offs.

Our final algorithm, regular algorithm with importance
weights (RAIW) has taken both graph entropy and impor-
tance weights into consideration, which improves the effi-
ciency due to graph entropy and guarantees the stability due
to importance weights. The entire process of crafting neural
graphs is shown in Figure 3. The edges with high importance
will be added to our neural graph if it does not destroy the
regularity of graph. For example, the edge with the top im-
portance weights 0.01 cannot be added to our neural graph
because it connects those vertices with higher degrees, thus
the edge with value of 0.005 is added instead, shown in the
final step in Figure 3.

3 Experiments
To evaluate the efficiency of our algorithms, we apply our
RAIW algorithm to generate neural graphs based on differ-
ent popular CNN architectures, such as VGG, Resnet and
Densenet. For comparison, we repeat the experiments on dif-
ferent datasets, such as CIFAR10, CIFAR100 and Imagenet,



with these architectures under various layer settings and com-
pare them with pruning techniques or the original models to
demonstrate better trade-offs of our algorithm. The stability
and regularity will also be discussed.

3.1 Comparison With Efficient CNN Architectures
And Pruning Algorithms

Techniques Accuracy Params
Original 94.0% 15.0M

[Li et al., 2016] 93.4% 5.4M
[Liu et al., 2017] 93.8% 2.3M
[Han et al., 2015] 93.3% 1.5M

RAIW 93.4% 1.1M
Table 1: The performance of VGG16 network crafted by RAIW al-
gorithm compared with original VGG16 and pruning techniques on
CIFAR 10 dataset.

VGG on CIFAR10
We first compare our algorithm against two popular pruning
techniques. [Han et al., 2015] prunes the neural connec-
tions with small weights, [Li et al., 2016] prunes the small
incoming weights based on a pretrained model and regains
the accuracy after the networks are fine-tuned and [Liu et
al., 2017] prunes the channels based on the scaling factors
in Batch normalization and repeats the process of training,
pruning and fine-tune. All of them achieve good performance
among pruning technique. To compare with them, we eval-
uate on CIFAR10 [Krizhevsky, 2009] with VGG architecture
[Simonyan and Zisserman, 2014].

The detailed results are shown in Table 1. Our algorithm
can preserve the accuracy, which has 0.6% drop but only
1.1M parameters, almost 14X compression rate. Further-
more, our RAIW algorithm allows higher sparsity than 14X
with a relatively small accuracy drop, which will be discussed
in Section 3.3.

Densenet and Resnet on CIFAR100
To evaluate the robustness of our algorithm, we deploy RAIW
on Densenet [Huang et al., 2016] and Resnet [He et al., 2016]
running on CIFAR100 dataset [Krizhevsky, 2009]. We sparse
these models by crafting convolutional layers whose filter
size is half of the original one by controlling the number of
selected edges in algorithms.

For Resnet on CIFAR100, we run Resnet with different
number of layers (32, 56, 110) on CIFAR100 dataset. We
compare our algorithm with these base models by compar-
ing the 1-crop error along with the number of parameters of
model, the details are given in Figure 4 (a). Our algorithm can
consistently have a better performance with the similar num-
ber of parameters, comparing the two lines in Figure 4 (a).
For example, the original Resnet-56 has 0.86M parameters
number with 28.89% error, however, our RAIW algorithm
which has the similar parameter number on Resnet-110, has
0.8% error drop.

For Densenet on CIFAR100, we run with Densenet-BC
which contains bottleneck layers and uses Densenet-BC-40-
24, 40-48, 40-60 which have 40 layers and different growth
rates as base models. Again, we show better accuracy-
parameters trade-offs, the details are given in Figure 4 (b).

Similarly, comparing the two lines in Figure 4 (b), the net-
work we crafted using RAIW algorithm can be more effi-
cient. For example, RAIW algorithm has 21.07% error on
Densenet-BC-40-60 with 2.10M parameters while the origi-
nal Densenet-BC-40-48 has 21.37% error with 2.76M param-
eters, which demonstrates the efficiency of our algorithm.

Model Accuracy Params
RAIW-Resnet-50 70.4% 13.28M

RAIW-Resnet-101 73.6% 21.08M
Resnet-34 73.3% 21.78M
Resnet-50 75.3% 25.50M

RAIW-Densenet-169 71.5% 8.32M
RAIW-Densenet-201 72.4% 11.74M

Densenet-169 74.8% 13.99M
Densenet-201 75.6% 19.78M

Table 2: The accuracy performance of Resnet and Densenet crafted
by RAIW evaluated on Imagenet dataset, compared with original
architectures, ordered by number of parameters.

Densenet and Resnet on Imagenet
To further evaluate the efficiency and generality of our algo-
rithm, we also test on Imagenet [Deng et al., 2009] using the
Resnet and Densenet architectures crafted by our algorithm.

For Resnet on Imagenet, we craft Resnet-50 and 101 and
compare them to the original ones with similar parameter
numbers. When the parameters number comes to 21M, our
RAIW algorithm on Resnet-101 can gain a slightly better ac-
curacy than Resnet-34 with less parameters, shown in Table 2
with bold. For Densenet on Imagenet, we craft Densenet-169,
Densenet-201 and compare them to the original ones. For
each Densenet model, RAIW has approximately 3% accu-
racy drop but only 40% parameters of the original one. Thus,
RAIW can obtain better accuracy-parameters trade-offs and
improve the efficiency of popular CNN architectures.

3.2 Stability Of Model
To evaluate the stability of models under constructions of dif-
ferent algorithms, we repeat the experiments on CIFAR10
with VGG16 architecture. For each algorithm, we repeat 5
times and compare their mean accuracy and standard devia-
tion. We compare the regular algorithm 2 with RAIW 3 to
demonstrate the role of importance weights. The results are
shown in Table 3.

Algorithm R1% R2% R3% R4% R5% Average
Regular 92.69 92.66 92.97 92.70 93.06 92.82±0.17
RAIW 92.97 92.77 93.00 92.82 92.69 92.85±0.12

Table 3: VGG16 model under construction of regular algorithm
and the one with importance weight over 5 runnings on CIFAR10
dataset. The final column “Average” denotes the mean accuracy ±
standard deviation.

From the results, it is obvious that the random regular al-
gorithm tend to have large variation on the accuracy due to
the random initial construction. Although they force graphs
to be regular to different extents, there still exists high uncer-
tainty because different connection distributions always have
different performance, which results in relatively high stan-
dard deviation, shown in the first row with 0.17. On the con-
trary, our RAIW algorithm has relatively high mean accuracy



Figure 4: Trade-offs between number of parameters and error shown in (a) and (b). The orange lines denote error-parameters number trade-
offs of our algorithm and the blue ones denote the original architecture. The two-line numbers on each data point in (a) denote the number of
layers in ResNet on the first line and the corresponding error on the second line. Those in (b) denote the number of layers in DenseNet with
its growth rate on the first line and the corresponding error on the second line. We show the performance of our algorithm applied to Resnet
on CIFAR100 in (a), Densenet on CIFAR100 in (b). (c) illustrates entropy variation of 256*256 and 512*512 layers construction with degree
of 16. From the line chart, regular algorithm can guarantee much faster entropy increment compared with random algorithm.
and low standard deviation with 92.85 ± 0.12 (shown in the
last row) because once the importance weights are computed,
the neural graph is fixed, which makes the performance more
stable and the graph can be stored for multiple-times use,
which saves the computation resources. As a result, RAIW
algorithm improves the stability of regular algorithm, which
makes it easily deployable.
3.3 Role Of Regularity
Due to regularity, d can be hyper parameters we use to spar-
sify the network, where d denotes the degrees of all the ver-
tices. And accuracy relies heavily on it due to the trade-offs
between sparsity and performance. In this section, we run
VGG16 model on CIFAR10 under different regularity to eval-
uate trade-offs of our algorithms, as shown in Table 4.

VGG16 Original VGG d-32 VGG d-16 VGG d-8 VGG
Conv1 3x64x3x3 3x64x3x3 3x64x3x3 3x64x3x3
Conv2 64x64x3x3 64x64x3x3 64x64x3x3 64x64x3x3
Conv3 64x128x3x3 64x128x3x3 64x128x3x3 64x128x3x3
Conv4 128x128x3x3 128x64x3x3 128x64x3x3 128x32x3x3
Conv5 128x256x3x3 128x32x3x3 128x16x3x3 128x8x3x3
Conv6 256x256x3x3 256x32x3x3 256x16x3x3 256x8x3x3
Conv7 256x256x3x3 256x32x3x3 256x16x3x3 256x8x3x3
Conv8 256x512x3x3 256x32x3x3 256x16x3x3 256x8x3x3
Conv9 512x512x3x3 512x32x3x3 512x16x3x3 512x8x3x3
Conv10 512x512x3x3 512x32x3x3 512x16x3x3 512x8x3x3
Conv11 512x512x3x3 512x32x3x3 512x16x3x3 512x16x3x3
Conv12 512x512x3x3 512x32x3x3 512x16x3x3 512x16x3x3
Conv13 512x512x3x3 512x32x3x3 512x16x3x3 512x16x3x3
Linear1 512x512 512x128 512x128 512x64
Linear2 512x10 512x10 512x10 512x10

Total 14.98M 1.07M 0.75M 0.55M
Accuracy 93.96% 93.37% 93.06% 91.85%

Table 4: Details of each layer and number of parameters with accu-
racy of VGG16 model under different sparsity.

We have tried 3 different sparsity, marked as d − 32, d −
16, d− 8, and details of filter size or neural connection num-
ber of each layer are given in the Table 4. And the results
show satisfactory trade-offs, d − 32 gains 93.37% accuracy
with 1.07M parameters, compared with original VGG16 ar-
chitecture which gains 93.86% accuracy with 14.98M param-
eters, our crafted neural graph can obtain “14x” compression
rate with only 0.6% accuracy drop. Furthermore, d− 16 with

“20x” compression rate and d − 8 with “27x” compression
rate, both have relatively small accuracy drop.

The reason why our constructed architecture can have high
sparsity with less accuracy drop is that our algorithm incre-
ment on graph entropy is much faster than other ones, as
shown in Figure 4 (c). For the simplicity, we construct two
subnetworks and each of them contains neural connections of
two layers, which are 256 ∗ 256 and 512 ∗ 512. The blue and
green curves denote the entropy increment along with the in-
creasing of edge number under our regular algorithm 2 while
the orange and red ones denote random algorithm. It is obvi-
ous that our algorithm keeps obtaining large increment during
the first 1000 edges construction for 256 ∗ 256 layer and dur-
ing the first 2000 edges construction for 512 ∗ 512 layer. The
graph entropy almost reaches its peak when we select d = 8
where number of edges are 256∗8 = 2048 for 256*256 layer
and 512∗8 = 4096 for 512*512 layer. We found it interesting
that d = 8 is exactly the sparsity we have selected for d − 8
and that’s the sparsity where we found the accuracy tends to
have a relatively larger drop. Thus, we believe that the accu-
racy is highly related to entropy value. As a result, our regular
algorithm guarantees maximum increment of entropy in each
step so that it can gain large entropy with less edges, which
enables our model to have high sparsity.

4 Conclusion
Notice the strong connection between nerual networks and
graphs, we tried to improve the efficiency by construct neural
graphs which have better vertices and connections arrange-
ment. Thus, we propose to craft efficient neural networks
based on the properties of graph entropy. We reduce the com-
putation complexity of graph generation to make it deploy-
able and make use of importance weights to guarantee stabil-
ity. Our RAIW algorithm achieves better trade-offs compared
to pruning algorithms and efficient CNN architectures.
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